Tetrahedron Letters No. 43, pp 3697 - 3700, 1975. Pergamon Press. Printed in Great Britain.

REPLY TO THE COMMENT ON "NOVEL SUBSTITUENT EFFECTS IN ¹H AND ¹³C NMR SPECTRA OF 4- AND 4'-SUBSTITUTED N-BENZYLIDENEANILINES." PROBLEMS OF ¹H CHEMICAL SHIFT MEASUREMENT

Naoki Inamoto,* Shozo Masuda, Katsumi Tokumaru and Masayuki Yoshida

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo, 113 Japan

and

Youko Tamura and Kazuo Tori*

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan (Received in Japan 28 August 1975; received in UK for publication 15 September 1975)

In recent years, organic chemists have appeared to treat ¹H NMR data not cautiously. Before presenting ¹H NMR data, ¹ we must overcome the two tedious problems: (1) how to measure a peak position accurately, and (2) how to analyse a signal pattern. In fact, a description such as " δ 4.38 (CHOH, t, J = 3) in CDCl₃" is not so much informative for the reader unless the accuracies are noted. Accuracies and precisions of ¹H NMR data are dependent upon the kind of the instrument used, the measurement procedure and the method of the signal analysis.

Quite recently, Sandhu, Mago and Wakefield² have made the following comment on our recent paper³ in which we discussed the Hammett relationships of chemical shifts of the imidoyl proton H_a in 4'- (series I) and 4-substituted N-benzylideneanilines (series II): they suggest that our chemical shift measurements may not be accurate to $\delta \pm 0.01$; (2) even if the data might be sufficiently accurate, they do not believe the Hammett correlation obtained with only five data of such small $\Delta\delta_{H}$ values as in series II; (3) CDCl₃ may not be a solvent suitable for the present purpose; and (4) their NMR measurements on series II and 4-substituted 4'-methoxy-N-benzylideneanilines in CCl₄ did not reveal any Hammett correlations for $\delta_{H_{-}}$ values.

Therefore, we have re-examined the signal positions of this H_{α} singlet in series I and II in C_6H_{12} and CCI_4 as well as $CDCI_3$; the results are shown in the TABLE. The $\delta_{H_{\alpha}}$ data newly obtained in $CDCI_3$ agree well with those previously reported.³ However, our $\delta_{H_{\alpha}}$ values in CCI_4 considerably differ from their

Values ^a
Hammett p
la and l
ata on H
I Shift D
Chemical
TABLE.

CDCI₃^C 60 100 MHz +0.0515 8.42₀ 0.908 8.45₅ 8.46₀ 8.47₅ 8.42₅ ^a Chemical shifts are expressed by 5. In accordance with the procedure of other studies of Hammett relationships so far reported,³ we use a ł negative sign for a downfield shift. ^b Measured at a concentration of about 0.025 mmol/cm³, because the compounds were too insoluble to obtain values at infinite dilutions. ^C Values extrapolated to infinite dilutions. Several data were plotted for concentrations from 0.25 to 8.46 (8.47)^e 8.43 (8.43)^e +0.041 +0.040₆ +0.013 +0.016₀ +0.054 8.43 (8.43)^e 8.47 (8.45)^e 8.49 (8.48)^e 0.866 ł C₆H₁₂^b CCI₆^c 60 100 60 100 8.37 8.35₅ (8.45)^d 8.35₅ 8.35₀ 0.445 0.631 8.375 8.37 8.36₀ 8.37 8.36₅ (8.43)^d 8.36₅ ł Ĭ Z U L Series II 8.36 (8.43)^d 8.39 ł 8.33 8.32₀ (8.34 8.33₀ 0.910 8.32 8.31₅ 8.300 8.35₀ 1 0.896 8.36 0.015 mmol/cm³. ^d Taken from ref 2. ^e Taken from ref 3. ^f Correlation coefficients. 8.31 ł -0.149 -0.145₆ 8.37₅ CDCI₃^C 60 100MHz 8.41₀ 8.41₅ 8.31₀ 8.55₅ 0.954 0.990 8.455 (8.29)^e 8.46 (8.47)^e 8.56 (8.56)^e 8.42 (8.42)^e 8.41 (8.41)^e 8.38 (8.38)^e 8.31 C₆H₁₂^b CCI₆ 60 100 60 100 H H -0.139 -0.138₆ -0.180 -0.176₉ 0.960 0.960 0.971 0.970 8.34₀ 8.27₅ 8.20₀ 8.49₅ 8.365 8.31₅ Series I 8.33 8.35 8.32₀ 8.37 8.29 8.51 8.21 8.30₀ 8.29₀ 8.25₀ 8.44 8.43₀ 8.20₀ 8.30 8.26 8.31 8.33 8.21 Me OMe NMe₂ Substituent ố × σ r

3698

values.² Furthermore, similar Hammett $\rho_{H_{cl}}$ values having a positive sign were obtained for series II in the three solvents. We don't think that CCl₄ is a good solvent for a Hammett analysis; it is not an inert solvent⁴ as well as CDCl₃.⁵ Further, we think that the analysis employing the five data obtained with the typical substituents are sufficiently significant.⁶

We feel that the Sandhu, Mago and Wakefield data on $\delta_{H_{\alpha}}$ might be inaccurate, although we cannot easily criticize them because they do not state any experimental procedures as well as accuracies or precisions, and even the instrument used.² Even though their data might be enough accurate, the 4-substituted 4'-methoxy series belongs to a π -conjugation system different from series II, and therefore, it is not necessary to have a positive $\rho_{H_{\alpha}}$. Conversely speaking, the very small variations in the $\delta_{H_{\alpha}}$ values for this series as well as those observed by other workers⁷ can further support our discussion reported in the following paper.⁸

¹H NMR spectral measurement procedures were as follows. The spectra at 60 MHz were measured with a Varian A-60A spectrometer at ordinary probe temperature (38°). Calibrations of the spectrometer were performed by the side-band technique using a Hewlett-Packard 200CD audio-oscillator and an HP-521C electronic counter. For avoiding a change in the instrumental condition of stability during an about 500 Hz sweep from the H_a to TMS signal (sweep rate, 1 Hz/sec), the H_a signal position was measured from an about 490 Hz downfield side-band of the TMS signal modulated by the audio-oscillator: the side-band frequency was measured by the electronic counter with an accuracy to ±0.1 Hz. The accuracies and precisions of δ are about ±0.01. The NMR spectra at 100 MHz were taken with a Varian HA-100 spectrometer at ordinary probe temperature (30°) in the frequency-swept and internal-TMS-locked mode (sweep rate, 0.5 Hz/sec). The H_a signal position was, several times, measured by the direct reading of the signal peak from the internal-TMS lock using a Hewlett-Packard 5212A electronic counter with a precision to ±0.2 Hz. We think the accuracies of δ are about ±0.00₅. Discrepancies between the δ values observed at 60 and 100 MHz are generally seen for most spectrometers.⁹

REFERENCES

 Commission on Molecular Structure and Spectroscopy of IUPAC Physical Chemistry Division, "Recommendations for the Presentation of NMR Data for Publication in Chemical Journals," <u>Pure</u> <u>Appl. Chem.</u> <u>29</u>, 627 (1972).

- (2) J. S. Sandhu, D. Mago and B. J. Wakefield, Tetrahedron Lett. 1091 (1975).
- (3) N. Inamoto, K. Kushida, S. Masuda, H. Ohta, S. Satoh, Y. Tamura, K. Tokumaru, K. Tori and M. Yoshida, Ibid. 3617 (1974).
- (4) P. Laszlo, Progr. NMR Spectrosc. 3, 231 (1967).
- (5) Fortunately, the compounds of series I and II were, though slightly, soluble in C₆H₁₂ in the present case. This is not always the case, however. We believe that even in CCl₄ and CDCl₃, chemical shifts are useful for a Hammett analysis, conventionally.
- (6) It has been suggested that more than ten substituents should be included in an investigation of transmission of substitution effects;¹⁰ however, the use of typical substituents such as the present ones, though less than ten,¹¹ appears enough to examine the tendency for ρ, unless the p values are discussed in detail and if the data are sufficiently accurate and precise.
- (7) V. Bekarek, J. Klicnar, F. Kristek and M. Vecera, <u>Coll. Czech. Chem. Comm.</u> <u>33</u>, 994 (1968);
 K. Tabei and E. Saitou, Bull. Chem. Soc. Japan <u>42</u>, 1440 (1969).
- (8) N. Inamoto, S. Masuda, K. Tokumaru, K. Tori and M. Yoshida, the following paper.
- (9) NMR Data Subcommittee of the Chemical Society of Japan, "A Report of Investigation of the Reliability on ¹H NMR Data," Kagaku to Kogyo (Chem. Ind. Japan) <u>26</u>, 674 (1973).
- (10) D. A. Dawson, G. K. Hamer and W. F. Reynolds, Can. J. Chem. <u>51</u>, 39 (1973).
- (11) J. Fukunaga and R. W. Taft, <u>J. Amer. Chem. Soc.</u> <u>97</u>, 1612 (1975).